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INTRODUCTION

This atlas is one of several reports that are products of an analysis of regional
aquifer systems in the Great Basin of Nevada, Utah, and adjacent States. The
Geological Survey program of regional aquifer-system analyses is a nationwide study
of ground-water systems on a regional scale. The program is intended to establish a
framework of geologic, hydrologic, and geochemical information for each regional
aquifer system studied. As of 1985, studies have been started or completed in 19
areas. The scope of the Great Basin Regional Aquifer-System Analysis is outlined by
Harrill and others (1983). The purpose of this report is to bring the findings of several
studies together into a map report that discusses regional aspects of ground-water
flow in the Great Basin, delineates the major ground-water flow systems, and briefly
describes some of their characteristics. :

This atlas is Chapter C of a three-part series. Chapter A delineates and describes
hydrogeologic units in the Great Basin region, and Chapter B shows the generalized
distribution of hydraulic potential. i

THE STUDY AREA

The Great Basin region discussed herein includes about 140,000 mi?, largely in
Nevada and Utah, but with smaller components in Arizona, California, Idaho, and
Oregon (fig. 1). The study area generally conforms to the Great Basin region as shown
by Stewart (1980, p. 7); however, it includes an area of southeastern Nevada that is
tributary to the Colorado River, and it excludes some of the Great Basin parts of
southeastern California and southern Oregon and the headwater areas of some of the
principal drainages in the Sierra Nevada and Wasatch Range. The study area is
characterized by generally north-trending mountain ranges more than 50 miles long,
separated by alluvial and fluviolacustrine basins. Most mountain ranges are 5 to 15
miles wide and rise 1,000 to 5,000 feet above the adjoining basin floors, which are also 5
to 15 miles wide. The area has had a complex geologic history that includes major
episodes of sedimentation, igneous activity, orogenic deformation, and continental
rifting. Major tectonic activity beginning about 17 million years ago involved
extensional faulting that formed the major basins and ranges which characterize the
present physiography (Stewart, 1980, p. 5). Many of the structural basins are
topographically closed; however, others are interconnected by river systems, which
terminate in major lakes or sinks. The Great Salt Lake of Utah and Pyramid and
Walker Lakes of Nevada are remnants of two large lakes that occupied much of the
study area from more than 26,000 years ago to about 11,000 years ago (Bensen, 1978,
p. 313, and Arnow, 1984, p. 2). Lake Bonneville covered a maximum area of about
20,000 mi2 in Utah, and Lake Lahontan covered a maximum of about 8,000 mi2 in
Nevada. About 12,000 mi2 in the southeast part of the study area drains to the
Colorado River; however, most of this drainage is in the form of interhasin ground-
water flow rather than streamflow.

PREVIOUS WORK

Several investigators have delineated regional ground-water flow systems in
parts of the Great Basin. The most extensive work has been in southern Nevada
(Winograd, 1962; Winograd and Eakin, 1965; Blankennagel and Weir, 1973; and
Winograd and Thordarson, 1975). Eakin (1966) described the White River flow system
in southeast Nevada using ground-water budget techniques and hydraulic gradients.
Mifflin (1968) evaluated flow systems throughout Nevada and identified 136 systems,
separating them into two groups on the basis of the presence or absence of interbasin
flow. Mifflin’s work was augmented by Rush and others (1971) who prepared a map
summarizing interbasin flows for 232 hydrographic areas in Nevada. Winograd and
Friedman (1972) demonstrated that ratios of the isotopes deuterium (hydrogen-2) and
hydrogen-1 in ground water are useful tools for tracing regional flow in the Great
Basin. Gates and Kruer (1981) described areas thought to be associated with regional
ground-water flow in western Utah. Bedinger, Harrill, and Thomas (1984) and
Bedinger, Gates, and Stark (1984) have prepared flow-system maps of the Basin and
Range Province in Nevada and Utah, which delineate the shallcvest observed or local
flow systems on the basis of the water-table configuration. Bedinger, Reed, and
Langer (1984) delineated regional flow systems underlying the local systems using a
rationale devised for mapping the hydraulic head for regional ground-water flow.

HYDROGEOLOGIC UNITS !

Because the Great Basin has had a complex geologic history, a wide variety of
rock types and structural features are present. All rocks in the area can be grouped
into three categories: basin fill with mostly moderate to high permeability, consoli-
dated rocks with generally low permeability, and consolidated rocks with moderate
and locally high permeability (fig. 2). :

The basin fill consists primarily of unconsolidated and weakly consolidated
deposits of gravel, sand, silt, and clay derived from adjacent mountains. Some
volcanic rocks also are included in the fill. Thickness of the basin fill is generally
between 2,000 and 5,000 feet, but exceeds 10,000 feet in the deepest basins. Sand and
gravel deposits to depths of about 1,500 feet are the most productive aquifers, and
supply almost all water withdrawn by existing major water users. The deep basin-fill
deposits are unexplored in most places; however, the sparse information available
indicates that they generally do not yield water as readily as the shallower deposits,
and that some may contain water of poor quality.

The consolidated materials of generally low permeability include clastic sedi:
mentary rocks, intrusive and extrusive igneous rocks, and metamorphic rocks, which
generally do not transmit water readily unless they have been extensively fractured, as
is the case for the area in figure 2 that includes highly fractured welded tuff. Another
exception is basalt, which locally can be highly permeable. Carbonate rocks
(limestone and dolomite) also can have a low permeability where they are unfractured
or where fractures enlarged by solution are not common and not interconnected.

The bedrock of moderate to locally high permeability includes primarily
carbonate rocks within which secondary permeability has been developed, probably
by solution enlargement of fractures. These rocks underlie a large area in western
Utah and eastern Nevada—the carbonate-rock province— where thick sequences of
carbonate sediments were deposited in Paleozoic and early Mesozoic time. In this
province, geologic formations of Paleozoic and early Mesozoic age range in aggregate
thickness from 20,000 to 30,000 feet, and much of this sequence is composed of
carbonate rocks. The carbonate-rock province is typified by complex interbasin
regional flow systems that include both basin-fill and carbonate-rock aquifers.
Regional structural features that might lead to the formation of significant fracturing
and resultant secondary permeability include overthrust zones, strike-slip shear
zones, and low-angle extensional fault zones (detachment surfaces). Locally, high-
angle normal or listric faults may also cause significant fracturing and resultant
permeability.

HYDROGRAPHIC AREAS

A total of 260 hydrographic areas or subareas are presently recognized within the
Great Basin region (fig.3). These areas usually are the basic units used by State and
local agencies for planning and management of water resources, and they commonly
include only one topographic basin. Most areas contain a basin-fill ground-water
reservoir and include the drainage area in the adjacent mountains. Generally, the
topographic and geologic features that constitute the geographic boundaries of
hydrographic areas and subareas correspond to hydrologic boundaries; conse-
quently, boundaries of larger ground-water flow systems generally correspond to
boundaries of either hydrographic areas or subareas.

EXPLANATION

HYDROGRAPHIC-AREA BOUNDARY --Numbers correspond to those used in
the adjacent list. Numbers for areas in Nevada are those generally used by
State agencies to identify specific areas. Numbers for areas outside of Nevada
are index numbers assigned only for purposes of this report. In accompanying
list, hydrographic areas are grouped by flow system. Parenthetical flow-system
numbers are those shown in figure 6. Asterisk indicates a hydrographic area
with subareas in more than one major flow system.

HYDROGRAPHIC-SUBAREA BOUNDARY
MAJOR FLOW SYSTEM BOUNDARY
STUDY-AREA BOUNDARY

122 GABBS VALLEY (22) 244 Valjean Valley
136 MONTE CRISTO VALLEY (23) 245 Shadow Valley
SOUTH-CENTRAL MARSHES (24) NEWARK VALLEY SYSTEM (29)
113 Huntoon Valley 154 Newark Valley
: :; ge;ls delfrs\;‘al\lja"ey 155 Little Smoky Valley *
is e
118 Columbus Saltexdarsh Valley g gorthelrg Part
. entral Part
119 Rhodes Sait Marsh Valley RAILROAD VALLEY SYSTEM (30)
120 Garfield Flat 150 Little Fish Lake Vall
121 Soda Spring Valley * 156 Li Vallogs
B. Eastern Part ittle Smoky Valley
135 Lone Valley C. Southern Part
137 Big Smoky Valley - 156 Hot Creek Valley
A. Tonopah Flat 173 Railroad Valley *
141 Ralston Valley B. Northern Part
142 Alkali Spring Valley 170 PENOVYER VALLEY (31)
143 Clayton Valley INDEPENDENCE VALLEY SYSTEM (32)
149 Stone Cabin Valley . 177 Clover Valley
138 GRASS VALLEY (25) 188  Independen. wValley
1378 NORTHERN BIG SMOKY VALLEY (26) *
DIAMOND VALLEY SYSTEM (27) (26) 176 RURBqu VCLLEY SYSTEM (33)
y Valley |
139 Kobeh Valley 178 Butte Valley *
140 Monitor Valley
A. Northern Part A. Northern Part
B. Southern Part COLORADO SYSTEM (34)
151 Antelope Valley (Eur & Nye) 164 Ivanpah Valley
152 Stevens Basin A. Southern Part
153 Diamond Valley B. Northern Part
DEATH VALLEY SYSTEM (28) 165 Jean Lake Valley
144 Lida Valley 166 Hidden Valley (South)
145 Stonewall Flat 167 Eldorado Valley
146 Sarcobatus Flat 171 Coal Valley
147 Gold Flat 172 Garden Valley
148 Cactus Flat 174 Jakes Valley
167 Kawich Valley 176 Long Valley
158 Emigrant Valley 180 Cave Valley
A. Groom Lake Valley 181 Dry Lake Valley
B. Papoose Lake Valley 182 Delamar Valley
159 Yucca Flat 183 Lake Valley
160 Frenchman Flat 198 Dry Valley |
161 Indian Springs Valley 199 Rose Valley .
162 Pahrump Valley 200 Eagle Valley;
168 Three Lakes Valley (Northern Part) 201 Spring Valley
169 Tikapoo Valley 202 Patterson Valley
A. Northern Part 203 Panaca Valley
B. Southern Part 204 Clover Valley
173 Railroad Valley * 205 Lower Meadow V Wash
A. Southern Part 208 Kane Springs Valley
211 Three Lakes Valley (Southern Part) 207 White River Valley
225 Mercury Valley 208 Pahroc Valley
226 Rock Valley 209 Pahranagat Valley
227 Fortymile Canyon 210 Coyote Spring Valley
A. Jackass Flats 212 Las Vegas Valley
B. Buckboard Mesa 218 Black Mountains Area
228 Qasis Valley 218 Garnet Valley
229 Crater Flat 217 Hidden Valley (North)
230 Amargosa Desert 218 California Wash
240 Chicago Valley 219 Muddy River Springs Area
241 California Valley 220 Lower Moapa Valley
242 Lower Amargosa Valley 221 Tule Desert '
243 Death Valley 222 Virgin River Valley

Figure 3.—Hydrographic areas
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Figure 6.—Major flow systems

GOSHUTE VALLEY SYSTEM (35)
Butte Valley *
B. Seuthern Part
Steptoe Valley
Goshute Valley
MESQUITE VALLEY (36)
GREAT SALT LAKE DESERT SYSTEM (37)
Grouse Creek Valley
Pilot Valley
Deep Creek Valley
Snake Valley
Pine Valley
Wah Wah Valley
Tule Valley
Fish Springs Flat
Dugway-Government Creek Valley
Park Valley *
A. West Park Valley
Great Salt Lake Desert *
A. West Part
Spring Valley
Tippett Valley
Antelope Valley
A. Southern Part
B. Northern Valley
Thousand Springs Valley
A. Herrell-Brush Creek
B. Toano-Rock Spring
C. Rocky Butte Area
D. Montello-Crittenden
Pilot Creek Valley
GREAT SALT LAKE SYSTEM (38)
Park Valley *
B. East Park Valley
Great Salt Lake Desert *
B. EastPart
Tooele Valley
Rush Valley
Cedar Valley
Utah Valley Area
A. Goshen Valley
B. Southern Utah Valley
C. Northern Utah Valley
Northern Juab Valley
Salt L ake Valley
East Shore Area
West Shore Area
Skull Valley
Sink Valley
Cache Valley
Malad-Lower Bear River Area
Pocatello Valley
Blue Creek Valley
Hansel & N. Rozel Flat
Promontory Mtns Area
Curlew Valley
Great Salt Lake
SEVIER LAKE SYSTEM (39)
Beryl-Enterprise Area
Parowan Valley
Cedar City Valley
Beaver Valley
Milford Area
Leamington Canyon
Pavant Valley
Sevier Desert

Modified from Toth {1963, fig.3}

BASIS FOR DEFINING FLOW SYSTEMS

Theoretical aspects of « Tound-water flow systems were examined in the 1960’s by
Toth (1962, 1963) and F.eeze and Witherspoon (1966, 1967), who modeled
hypothetical systems along vertical sections. Toth (1963, p. 4807) used a system of
uniform permeability to derr onstrate that, if the potential on the surface of the system
differed from a linear gradie 21, circulation cells would form in response to local areas
of recharge and discharg that correspond with areas of localized high and low
potential, respectively. Totr: was able to identify three types of flow systems—Ilocal,
intermediate, and regional—on the basis of the length of flow lines and whether flow
passed beneath local areas of high or low potential. These types of systems are
illustrated in figure 4. His findings that are most applicable to the Great Basin are (1)
the concept that deep regional flow can pass beneath shallow local areas of high

potential (ground-water divides) and (2) the example that variations in permeability:

within the system can cause appreciable discharge upgradient from the hydraulic
terminus of the system.

Freeze and Witherspoon (1967, p. 626-632) evaluated the theoretical effects of
subsurface permeability variations on regional ground-water flow. They developed a
number of two-dimensional vertical sections that illustrate the diversity of possible
regional-flow patterns. A general conclusion from their work is that when permeability
in the deeper part of the system is increased, deep circulation of flow increases,
discharge becomes concentrated near the terminus of the system, the vertical
component of flow in the shallower parts of the system is increased, and circulation
cells representing iocal or intermediate systems are less likely.

POTENTIAL FOR REGIONAL GROUND-WATER FLOW

Large ground-water flow systems are driven by hydraulic gradients that are
continuous over long distances. These large systems generally are either the regional
or intermediate types described in the preceding section. Bredehoeft and others
(1982) reviewed the development of concepts relating to regional ground-water flow.
One of the principles they listed as governing regional ground-water flow was that
“differences in hydraulic head produced by topographic relief on the boundaries of the
system are, in most instances, the driving force for the flow.” This principle was used
to evaluate the potential for regional flow in the Great Basin. The approach taken was
to determine the lowest water-level altitude in the basin-fill deposits of each valley
(which generally is only slightly below the topographically lowest point in the basin),
and then to draw smooth contours through the point altitudes for each valley. Figure 5
shows indices of the regional flow potential obtained using this method. If deposits and
rocks are sufficiently permeable, regional flow would be toward the Colorado River or
major sinks. More detailed information on regional hydraulic gradients is presented by
Thomas and Mason (1986). Bedinger, Reed, and Langer (1984) developed a rationale
for mapping hydraulic head for regional flow and applied it to the Bonneville region of
the Basin and Range Province. The resulting contours (Bedinger, Reed, and Langer,
1984, pl. 2) are quite similar to the indices of regional flow potential shown in figure 5.

MAJOR FLOW SYSTEMS IN THE GREAT BASIN

The general concepts outlined above were helpful in delineating the major flow
systems in the study area. The “major flow system” is herein considered to be the
local, intermediate, or regional system that is dominant—usually the one conveying
the largest percentage of ground water in the area. Where consolidated rocks are
permeable enough to afford significant identifiable hydraulic continuity on a regional
scale, the local and intermediate types of systems were considered to be subsystems
within major regional-flow systems. Where consolidated rocks have only low
permeability and where water-budget studies do not indicate interbasin flow, regional
flow was considered insignificant and the local and intermediate types of systems were
considered to be the major flow systems. Where several basins are traversed by a
major stream, and continuity between the basins is provided primarily by the stream,
these interconnected basins are considered to consitute a complex regional-scale
major flow systeminvolving substantial interaction between ground water and surface
water. The Humboldt, Truckee, Carson, and Walker River basins of Nevada are
examples of this situation. A basic premise is that each flow system terminates in a
discharge area. Consequently, if all of the terminal discharge areas are identified, the
task of delineating a flow system is reduced to identifying areas that contribute flow
toward the specified discharge area. For local systems consisting of only one basin or
of a discharge area and one or more tributary basins, the task is simple, providing
adequate hydrologic data are available; however, some of the larger regional systems
extend for more than 100 miles and have flow paths that traverse as many as seven
basins. In most instances, some water discharges at intermediate points along this
path from local or intermediate flow systems; consequently, only some of the water
flows all the way to the regional discharge area. Boundaries between systems are only
generally defined; some may represent physical barriers to flow such as masses of
intrusive rocks and others represent ground-water divides or divisions where an area
of parallel flow ultimately diverges downgradient. Again, adequate hydrologic dataare
needed to precisely define flow-system boundaries. For much of the Great Basin,
these data are not yet available.

A delineation of the major flow systems was made using the general procedures
outlined in the preceding paragraphs and information published through 1984 on
hydraulic heads, water budgets, and interbasin flows. This information was developed
from data biased toward the shallower parts of the systems. Consequently, the
boundaries of deeper major flow systems are delineated primarily on the basis of
inference from information regarding the shallower part of the systems. The 39 major
flow systems delineated are shown in figure 6 and, in detail, on sheet 2; some of their
general characteristics are summarized in table 1.

The 39 flow systems identified in table 1 range in area from 30 to 18,000 miZ2.
Sixteen are single-basin systems, the remainder are multibasin systems which may
include as many as 34 hydrographic areas or subareas. Large multibasin flow systems
outside of the carbonate-rock province are generally coincident with major river
systems. Large multibasin systems within the carbonate-rock province typically have
little surface flow; instead, they may contain ground-water flow paths more than 100
miles long that traverse several basins. Discharge from these systems is typically from
large springs. This discharge generally is consumed by evapotranspiration in the
vicinity of the spring. Altitudes of terminal discharge areas range from about 5,800 feet
in high parts of central Nevada to a low of about 200 feet below sea level in Death
Valley.

An alternate interpretation of the data for Utah is possible. The Sevier Lake,
Great Salt Lake Desert, and Great Salt Lake systems could have been groupedintoa
large system with its terminus at the Great Salt Lake. There is some geologic and
hydrologic evidence for regional continuity between these areas, but significant
hydraulic gradients between the areas are virtually nonexistent; consequently, the
volume of subsurfzce flow is relatively small. Moreover, each of the three areas has a
distinctive hydrologic character. Consequently, this part of the region is described as
three major flow systems with three terminal discharge areas.

In southern Nevada, the hydrologic character of parts of the western boundary of
the Colorado system is not well understood and its location is uncertain. Additional
information probably will allow significant refinement of this boundary.
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CONVERSION FACTORS AND ABBREVIATIONS

“Inch-pound” units of measure used in this report may be converted to
International System (metric) units by using the following factors:

Multiply By _To obtain_
Feet (ft) 0.3048 Meters (m)
Miles (mi) 1.609 Kilometers (km)

Square miles (mi?) 2.590

Sealevel: Inthis report “sealevel” refers to the National Geodetic Vertical Datum of
1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the
first-order level nets of both the United States and Canada, formerly called “Sea Level
Datum of 1929”.

Square kilometers (km?)

Map No.:

Major ground-water flow systems shown in figure 6.
Natural recharge.

Excludes irrigation return flows and other man—induced forms of recharge.

TABLE 1—CHARACTERISTICS OF MAJOR FLOW SYSTEMS

Primarily a compilation

Ground-water recharge: Num]
of published estimates. Where information was not available, rough estimates were made for this compilation. hy:r:;a;tflic Ground-water NNA.-19490412.0059
Ground—water storage: Represents water stored in basin-fill reservoirs. Number is the amount of water (in acre-feet) that would be released Area areas or Ground-water storage
from storage if the water table in a given area were uniformly lowered 1 foot. Storage for a given interval of dewatering can be estimated Map (square subareag recharge (acre-feet
by multiplying the per—-foot values by the total interval, in feet, to be dewatered. Volumes estimated may include some water of poor No. Flow-system name ailes) included (acre-feet) per foot) System characteristics References
quality. Does not include water stored in consolidated rock. Values are based primarily on published estimates. Where information was not
available, rough estimates were made for this compilation using approximate areas of saturated basin fill and an average specific-yield
value of 10 percent. 23 Monte Cristo 284 A 500 7,200 Consolidated rock is volcanic, metasedimentary R52
References: Letters refer to report series; number indicates the specific repgort number (see accompanying list). B, Water—Resources Valley and metavolcanic, with some intrusives., Is an
Bulletin, Nevada Department of Conservation and Natural Resources; OF, Open-File Report, U.S. Geological Survey; P, Professional Paper, arid single-basin flow system (playa altitude
U.S. Geological Survey; R, Water-Resources Reconnaissance Report, Nevada Department of Conservation and Natural Resources; TP, Technical about 5,268 ft).
Publication, Utah Department of Natural Resources; W, Water—-Supply Paper, U.S. Geological Survey; WRI, Water-Resources Investigations
Report, U.S. Geological Survey. See accompanying list for more complete citatiom. 24 South Central 6,790 12 65,000 190,000 Consolidated rock i{s primarily volcanic and B4l, R12, R28,
Marshes intrusive, with some areas of carbonate and R45, R52, RS58
clastic sedimentary. 1Is an arid area with
Number of interbasin flow through fractured rocks.
hydrographic Ground-water Terminal discharge area includes five individual
( Area arzas or Grou;d-water (storage . ;riis situated in topographic lows along the
Ma, square subareas recharge acre-fee alker Lane structural zone. Clayton Valle
Nol., Flow-system name miles) included (acre-feet) per foot) System characteristics References playa (altitude about 4,265 ft) is lowest pZint
' in system.
1 Continental Lake 409 2 16,000 6,100 Consolidated rock is primarily volcanie. Flow R22 25 Grass Valley 595 L 12,000 16,000 Consolidated rock is primarily volcanic, with R29
system between basins is primarily in surface streams. some silicecus sedimentary. Is a single-basin
Flow in consolidated rock not determined; small if system (playa altitude about 5,620 ft).
any. Altitude of terminus at Continental Lake :
about 4,213 ft. 28 Northern Big 1,320 L 65,000 50,000 Consolidated rock is primarily volcanic, B4l
Smoky Valley . intrusive, clastic sedimentary, and carbonate.
2 Virgin Valley 494 1 7,000 420 Consolidated rock is primarily volcanic. Minor R22 ! Is a single-basin system (plaiu altitude about
surface-water flow to Continental Lake system, but 5,620 ft); however, south boundary is formed by a
for purposes of this study, area is considered a ground-water divide in alluvium.
single~basin system (lowest point in area is at .
altitude of about 4,805 ft)., Flow in consolidated 27 Diamond Valley 3,120 5 58,000 88,000 Consolidated rock is primarily volcanic, B35, R6, R30,
rock not determined; small if any. system siliceous sedimentary, and carbonate. Area R31,
contains a large Pleistocene drainage area from
3 Swan Lake Valley 226 1 6,700 1 Consolidated rock is primarily volcanic. R15 which present day runoff is ephemeral. Interbasin
Hydrologic system is dominated by surface-water flow is primarily through basin fill, with minor
flow. No large basin-fill reservoir is present. leakage through consolidated rock into Diamond
Altitude of terminus at Swan Lake Reservoir is Valley. Diamond Valley playa (altitude about
about 5,635 ft. 5,775 ft) is terminus of system. Significant
discharge occurs in upgradient basins. Area ma,
4 Long Valley 729 4 12,000 12,000 Consolidated rock is primarily volcanic. RIS contribute some flow to Fish Springs in adjaceni
Conci:uit{ be;v{eeniare;; i: prim:ri}llyll;y Newark Villgi sys;envz.llSeveral large springs are
ground-water flow in alluvium and shallow present in Diamond Valley.
consolidated rock. Altitude of terminus at
Massacre Lake 1s about 5,620 ft. 28 Death Valley 15,800 39 98,000 380,000 Consolidated rock is predominantly carbonate and - 8BS, B§,
system volcanic, which i{s commonly fractured intensively OF77-728,
6 Duck Lake Valley 533 1 9,000 5,600 Consolidated rock is primarily volcanic. In wet R17 by structural deformation along regional-scale OF80-569,
years, surface water flows to adjacent Surprise shear zones within Walker Lane. System ig OF81-635,
Valley, Calif. Playa altitude is about 4,680 ft. characterized by major interbasin flow and large OF83-542,
regional springs. The Death Valley playa P494-B,
8 Black Rock Desert 9,100 18 170,000 230,000 Consolidated rock is primarily volcanic and B31, B34, B37, (altitude about 200 ft below sea level) is P712-B,
system intrusive. Black Rock Desert is a regional R4, R7, RI11, terminus of system. System includes several P712-C, P927,
ground-water sink (playa altitude is about R20, R44 subsystems that discharge at intermediate points. R10, Rl4, R4S,
3,905 ft). Most prominent of these 18 Ash Meadows flow RS54, W1832
gystem., Character of northeast boundary is not

7 Humboldt system 16,800 34 500,000 330,000 Consolidated rock is predominantly volcanic and B32, B39, well understood.,
siliceous sedimentary in lower basin, and clastic  P491-D, R2,
sedimentary, metamorphic, volcanic, and carbonate RS, R19, R29, 29 Newark Valley 1,450 3 22,000 17,000 Consolidated rock 1s volcanic, clastic R1, R38
in upper basin. Hydrologic system is dominated R31, R32, R3S, system sedimentary, and carbonate., Interbasin flow is
by Humboldt River. Eleven basins are along R37, W1581, primarily through alluvium. The Newark Valley
mainstem; remaining basins are tributary areas. w1754, W1795, playa (altitude about 5,835 ft) is the terminus
Regional discharge is to Humboldt Sink (altitude wisie6, of the system. Several large springs occur in
about 3,890 ft), with surface-water overflow to Newark Valley. The character of the east and
Carson Sink. southeast boundaries 18 not well understood.

8 Buffalo Valley 504 1 12,000 17,000 Consolidated rock is primarily siliceous sedimentary B32 30 Railroad Valley 4,130 4 65,000 92,000 Consolidated rock i{s primarily volcanic and R38, R60
and volcanic. Is an arid single—basin system system carbonate. Railroad Valley playa (altitude about
(playa altitude about 4,600 ft). 4,710 ft) is terminus of system. Area is

characterized by large springs. Character of

9 Buena Vista 742 1 10,000 24,000 Consolidated rock is primarily fine—grained B13 north boundary is not fully understood.
marine and continental clastic sedimentary, with
some volcanic and intrusive. Is an arid single- 3 Penoyer Valley 700 o 1 4,300 22,000 Consolidated rock is volcanic, with some R60
basin system (playa altitude about 4,035 ft). carbonzte. Is)a single-basin system (altitude

) about 4,710 ft) that may overlie part of a deep
10 Granite Springs 1,300 2 4,500 36,000 Consolidated rock is primarily volcanic, and R55 regional flow system.
system fine-grained marine and continental clastic :
sedimentary, with some intrusive. Flow between 32 Independence 1,030 2 30,000 33,000 Consolidated rock is primarily carbonate, B12
basins 1s through fractured non-carbonate ! Valley system metamorphic, and volcanic. Discharge is
consolidated rocks. Discharge area is Granite significant in both basins, with possible minor
Springs Valley playa (altitude about 3,898 ft). ; flow between basins. Playa in Independence
: Valley (altitude about 5,585 ft) is terminus of
1 Winnemucca Lake 37N 1 2,900 9,600 Consolidated rock is primarily volcanic and R57, W1539-C ! system.
Valley intrusive. Is considered a single-basin system, |
but when Pyramid Lake was at higher stages this | 33 Ruby Valley 1,280 ' 2 72,000 43,000 Consolidated rock is primarily carbonate and Bl12, R49
area received intermittent surface-water inflow : system metamorphic. Ruby Marshes (altitude about
from Truckee River. Altitude of Winnemucca Lake 5,965 ft) are terminus of system. Area receives
playa 1s about 3,770 ft. ground-water inflow from Huntington Valley as a
result of flow through carbonate rocks.

12 Truckee system 1,700 9 73,000 36,000 Consolidated rock is primarily volcanic, with OF84-433,
some areas of marine and continental metasediments OF84-465, R4l, 34 Colorado system 16,300 34 200,000 440,000 Congolidated rock is primarily carbonate and B3, B4, BS,
and metavolcanics. System is dominated by the R43, RS7, X volcanic, with some clastic sedimentary and B6, B8, B18,
Truckee River, which is supplied by runoff from w1779-s, ! intrusive. Area is characterized by major B29, B33, B44,
Sierra Nevada. Interbasin flow is primarily by | . interbasin ground-water flow and large regional R3, Rl3, RI6,
surface water. Terminus of system is Pyramid Lake, springs. Colorado and Virgin Rivers act as R18, R21, R24,
except for water diverted to the Carson system. drains at terminus of system, but most discharge R25, R27, R36,
Lake altitude has fluctuated between a historical occurs upgradient at discharge points of major R46, R50, RS51,
high of 3,878 ft in 1891 and a historical low of regional subsystems. Since 1930's, altitude of R54, W1780
3,784 ft in 1967, Lake Mcad at Hoover Dam has fluctuated between

1,226 ft in 1983 and 1,083 ft in 1956. Altitude

13 Lemmon Valley 111 3 1,800 4,100 Consolidated rock is priwmarily marine and B42, OF80-1123 prior to construction of Hoover Dam was about
continental metasediments, intrusive, and some R43, 600 ft. Boundary of northwest margin of system
volcanics. Flow between basins is inhibited by is not precisely defined.
faylts, Ground-water outflow occurs, probably
through fractured granitic rock. Discharge is 36 Goshute Valley 3,640 3 110,000 94,000 Consolidated rock is primarily carbonate, Bl2, R42, R49
primarily by evapotranspiration in and near two system volcanic, and intrusive. Goshute Valley playa
playa areas. Altitude of lowest playa is about (altitude about 5,585 ft) is terminus of system,

4,915 fe. but significant discharge occurs in two
upgradient areas. Interbasin flow is relatively

14 Cold Spring 30 1 900 450 Consolidated rock is priwmarily marine and OF80-1287, R43 small and occurs through consolidated rock and

Valley continental metasediments, with some volcanics. basin fill. Part of area may be underlain by
1s & single-basin system. Significant surface- ) intrusive or metamorphic rocks that restrict deep
water flow reaches Alkali Flat area in most . interbasin flow. Ground-water outflow to Great
yesars. Playa altitude {s about 5,035 fe. 3slt Lake Desert ie relatively minor, due to
restricted flow in consolidated rock.
18 Pernley Sink 356 3 960 9,000 Consolidated rock is primarily volcanic. Systea R5S5
systea receives inflow and leakage from Truckee Canal 38 Mesquite Valley 236 1 1,400 7,000 Consolidated rock is primarily carbonate and R46
in addition to natural recharge. Discharge 1is clastic sedimentary, Part of area may be
primarily from Bradys Hot Spring and Pernley Sink underlain by an intrusive mass at depth, Is a
playa areas. Altftude of Fernley Sink Playa is single-basin flow system., Playa altitude about
about 4,012 fec. 2,540 fe.

16 Carson system 3,520 5 45,000 110,000 Consolidated rock is primarily volcanic, OF80-1224, 37  Creat Salt Lake 18,000 20 370,000 430,000 Consolidated rock is primarily carbonate and R33, R34,
intrusive, and slightly metamorphosed marine and OF80-2042, Desert systeam clastic sedimentary, with some volcanics and RA7, RS6,
continentsal sedimentary and volcanic. System OF82-345, intrusives. Terminus of system 1s Bonneville TPl4, TP24,
1s dominated by Carson River, which {s supplied PAL7-F, Salt FPlats in Great Salt Lake Desert (altitude TP29, TP3O,
by runoff from Sierrs Nevada. Regional R39, RS9 about 4,210 ft); however, because of lack of TP4l, TP4),
continuity is primarily by way of surface-water definition of ground-wvater divides, parts of P47, TPSL,
flow. Carsoan Sink (altitude about 3,870 ft) is area may contribute minor outflow to Creat Salt P56, TPS9,
terainus of system. Laske. Large springs discharge significant flow TP64, TP7L,

from terminal areas of major subsystems. W

17 Walker system 3,220 9 47,000 78,000 Consol{dated rock is primarily volcanic, 838, B43, Probably receives some nitjxor grou:d-w::er inflow 2037
intrusive, and slightly metamorphosed marine and or80-427, from Sevier Lake system.
continental sedimentary and volcanic. System {s or80-1217,
doainated by Walker River, which {s supplied by OF80-2046, as Creat Salt Lake 12,900 21 1,380,000 310,000 Consolidated rock is primarfly carbonate and OF69-28, PS518,
runoff from Sierra Nevada. Regilonal continuity R40, RS2, RS), systea clastic sedimentary, with some volcanics and TPi6, TPLI7,
is primarily by surface-water flow., Walker Lake w1228, intrusives., Great Salt Lake s terminus of TPI8, TP23,
ie terminus of system. Lake-surface altitude has system and receives surface-vater inflow from P25, TP26,
fluctuated between a historical high of 4,078 ft runoff generated {n Wasatch Range and Utata TP28, TP3O,
in 1908 and a historical low of 3,953 ft in 1982, Mountains, as well as ground-water iaflow. P31, TPII,

Ground water supplies abdbo 3 e P35, TP
18 Dixie Valley 2,380 ? 15,000 56,000 Consolidated rock is primarily marine and R23 annual inflow :zplak:. L::Q nn::u:: ::..“"‘. ‘l’P;:. 'l'l’zg:
systes continental sediments, volcanic, and some ! fluctuated between historical high of 4,212 ft TP44, TP4S,
nlxir::lv-. drf;tm :etw:-n ::-::: 1: t:ro:zh te an 1;6;873 and a historical low of 4,191 ft 1a TP69, TP8O,
alluvium an ractured nonca nate rock. 1 . Wi4
arid region, with Dixie Valley plays area as main Ullu;g:goo;.
discharge srea. Playa is lowest point in western WRIB3-4272
Nevada (altitude about 3,370 ft).
39 Sevier Lake 9,100 8 310,000 310,000 Consolidated rock is primarily volcante, OF83-4179
19 Edwards Creek 416 1 8,000 7,000 Consolidated rock is primarily volcanic, R26 system i carbonate, and clastic sedimentary. Receives TPL3, TPA3,
Valley 1s a single-basin flow aystem. ) surface-water inflow from Sevier River, which TP60, TP63,
dominates hydrology of part of systeam. TP73, TP9

20 Smith Creek 382 1 12,000 15,000 Consolidated rock is primarily volcenic, R28 loterbastin zloﬁ 05:“-. ::rough cznlolidotcd 1“79;' yugZQ'

Valley Is a single-basin flow systes. ; rock and basin fill, For purposes of this study, Wi854
Sevier Lake (altitude about 4,520 ft) 1s terainus

21 Rawhide Flats 227 1 150 600 Consolidated rock is primarily volcantc. R4Q of system, but some ground—\u;nt ou:glov n:;
:N:o"“i:ll '0:: ll’ouﬂd"‘ﬂ:l‘ 1“:1?" f:°l . ociur along west and northwest boundary to Crest
areon system, ow occurs through fracture Salt Lake Desert system.
rock. Flaya sltitude is about 3,880 ft. Y

22 Gabbs Valley 1,280 1 5,000 16,000 Consolidated rock is primarily volcanic and R9 Totals (rounded) 140,000 257 3,800,000 3, 500,000
marine and continental sedimentary. le an arid
single-basin flow system. Playa altitude 1s
about 4,105 fe.
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HYDROGRAPHIC-AREA BOUNDARY WITHIN MAJOR FLOW SYSTEM
———— GENERAL DIRECTION OF GROUND-WATER FLOW IN BASIN-FILL DEPOSITS

LARGE PERENNIAL STREAM OR RIVER IN HYDRAULIC CONTINUITY WITH
ADJACENT AQUIFERS

<M>
<4 FLOW ACROSS HYDROGRAPHIC-AREA BOUNDARY —Number is rate of
=14 flow, in thousands of acre-feet per year; Mindicates that flow is minor. Solid arrow

indicates that flow is primarily through basin fill or alluvium; dashed arrow indicates
that flow is primarily through permeable consolidated rock
' LOCATION WHERE FLOW FROM HEADWATER AREA OR MAJOR RIVER
Beur River ENTERS THE STUDY AREA
11) NATURAL GROUND-WATER RECHARGE TO A HYDROGRAPHIC
ARFEA—Estimated rate, in thousands of acre-feet per year
75 LARGE SPRING—Discharge is generally greater than 1,000 gallons per minute in
Utah and most of Nevada; in more aric parts of Nevada and in California, springs
with discharges greater than 200 gallons per minute are shown where they are
considered to have regional significar.ce. Number indicates number of springs
where more than one is indicated by a single symbol
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